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The problem of thermal Luc]c]ing of shells wh.ich are

made up of bi-directionally reinforced co:_posites have

been investigated. Such shells may be treaeted as ortho-

tropic s]_ells - a special type of anisotropic shells. LiThe

whol_ inv,_s ti .... " is _gallon d_vided _nto five scctions In

section]bounds on effective elastic moduli are obtained

by using the va_:iation principle. In section II, effective

thermal constants are obtained by using the e>:hremum

uhe_mo-el<:s_!e.lty. Strain energy exp. essionsprinciple of ........ " " "_ ....

for or thotropic s]lells have been derived in section iIY.

In deriving the strain energy expressions, non-linea_:

stretching of the middle surface has been takc;.n into consi-

deration. The result has been specialised for c],lindrical,

conical and spherical sLells.

The section IV treats the thermal s _'_o_<_so_problems

Two sets of equilibrium equations are derived for the case

of cylindrical and conical shells. The first set is

derived from the general equilibrium equations given by

Love. The second one is derived ",,_m_setting the first va_'iation

of potential eney. gy equal to zero. Ther;:.al stress problems

of cylindrJ.cal shells with _ types of orthotropy

u_
are solved for temperatures var ylng in a._eia],radial and,



in axial as well as radial direction. For a particular

case, a comparison of the ros_l]ts obtained from two sets

of equilibrium equa_cions has been :!lade.

k'hermal buckling problems have been trcatad in

section V. '_]]e Rayleigh-_<itz met]:od has bcen used to

obtain the buc][lin 9 criteria. ']'he buckling criteria

contain pre-buckling rotation terms. ]lowever in num©rical

calculations these terms have_ been l_e_'jlected. J:or cylin-

drical shells, the fixed end case as well as simple

supported case has been considered. For conical shells

on]], simple supported case has been investigated. L%!merical

results have been ]presented for cylindrical shells

_u:__"o,.{joctc.d to &xial an<_ r&u._al_" temDerature_ distrilgutions.
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SECTION I

INTRODUCTION

1.1 Thermal Buckling of Shells

During past few decades, shell structures have been

found to have extensive applications in high speed air-craft,

missiles, jet engines etc. In some such applications,

anisotropic material has replaced conventional isotropic

material because of its more desirable properties. So the

use of anisotropic shells now-a-days, is quite frequent.

However, the study made on anisotropic shell structures, as

compared to isotropic shells, is considerably less. One

main reason may be, many more elastic constants involved,

which complicate the problem to a great extent.

A seemingly important problem that may be encountered

in designing an anisotropic shell structure for air-craft

or missiles, is the problem of thermal buckling. Such a

problem arises as the result of aerodynamic heating, caused

by the super-sonic speed of these space ships. When a

shell is heated in a non-uniform manner, thermal stresses

develop. When there are no external forces, these stresses

are self equilibrating and both tensile and compressive

stresses exist. Because of the presence of compressive

stresses, thermal buckling may occur.
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The state of stress at which buckling occurs is re-

ferred to as critical state of stress and the corresponding

temperature is called critical temperature distribution.

Critical state of stress for a geometrically perfect

conservative system is independant of cause of stress (i)*

Keeping this statement in mind one may see, that there are

three problems that are to be solved before the buckling

problem can be formulated. The first problem is of course,

the determination of buckling stress. Leaving this problem

aside, the other two problems are, determination of temper-

ature distribution and the determination of thermal stresses

which arise from non-uniform temperature distribution.

As soon as the thermal stresses are known, the thermal

buckling problem can be formulated. The temperature can

be considered as characteristic parameter in the problem,

since with the variation of temperature, stresses vary.

Mathematical model for thermal buckling analysis of

structures is an eigen-value problem which requires the

determination of a characteristic parameter that occurs in

a homogeneous linear differential equation with homo-

geneous boundary conditions. The characteristic parameter

may be determined from the condition that the non-trivial

WNumber in pare_esis refers to references
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solution exists. In most cases, however, the exact solution

of the differential equation is not possible and so for the

practical purposes approximate methods are generally used.

An excellent review of some of these approximate methods,

with their relative advantages and disadvantages, has been

made by Pohle and Berman (2).

1.2 Object and Scope of Present Investigation

The present report is concerned with the problem of

thermal stresses and thermal buckling of shells which are

made up of bi-directionally reinforced composites. Such

shells may be treated as orthotropic shells - a special type

of anisotropic shell. Although in the present report the

results are drawn for cylindrical and conical shells, the

method of analysis is applicable for any shell of

revolution. As mentioned earlier, one of the problems to

be solved before the thermal buckling problem, is the

problem of determination of temperature distribution.

This is a problem of heat transfer and therefore, is not

considered here. Instead of that, some arbitrary temper-

ature distributions have been assumed and buckling criteria

have been obtained for them. An effective approximate

method, named Rayleigh-Ritz method has been used for

solving the buckling problem. This method is based on

the principle of stationary potential energy. The
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potential energy of the shell is derived by assuming the

shell to be made up of anisotropic homogeneous material,

whose effective elastic and thermal constants are known.

The whole report consists of five parts. Parts 1 and

2 consist of the method of determination of effective

elastic and thermal constants of composites. Part 3 deals

with the derivation of strain energy for single and multi-

layered shells considering small deflections. Part 4 deals

with the thermal stress problem. The last part treats the

problem of thermal buckling.

- 4 -



SECTION II

PREDICTION OF ELASTIC CONSTANTSOF

BI-DIRECTIONALLY REINFORCEDCOMPOSITES

II. 1 Composite

Before discussing the methods of determination

of elastic constants of composite material, it is worth-

while to discuss something about composite in general.

Although many definitions for composites are available

in literature, they differ widely and yet there is no

commonly accepted definition. The composite material with

which we will be concerned may be defined as (3) :

"A material system composed of a mixture or combination

of two or more macro constituents that differ in form and/

or material composition and that they are insoluble in one

another" •

The nature of any composite depends upon the nature of

constituent materials and their shape and structural

arrangement. Where the constituent material may be metallic,

inorganic or organic and their ways of combination may be

virtually unlimited - the shape of constituents are re-

stricted to certain specific types. The major constituent

form that are used in composites are fibers, particles,

laminas, flakes, matrixes and fillers (Fig 2.1).

The matrix serves as body constituent. It encloses
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the composites and gives it its bulk form. Fibers, flakes,

particles etc. are structural constituents that determines

the character of the internal structure of composite.

Figure 2.2 shows the different types of composite slabs.

Fiber Comos___

Of all the composites, fiber composite has drawn the

greatest attention from structural engineers. A great

improvement in strength and strength to density ratio may

be obtained by combining a fibrous material of high strength

and of high elastic modulus with a light weight bulk

material of lower strength and lower elastic modulus.

Table (I) in Reference (3) gives some idea about the degree

of such improvement achievable with fiber composites.

Factors that appreciably affect the mechanical and thermal

properties of a fiber reinforced composite are orientation

(unidirectional, bidirectional, etc), length (continuous,

discontinuous) , shape and composition of fibers, mechanical

properties of matrix and the integrity of the bond between

fiber and matrix.

II.2 Elastic Modulus of Composites - Introduction

For the analysis of composite shells, two methods are

available at present: (a) Netting Analysis and (b) Ortho-

tropic Analysis.
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In the Netting Analysis, matrix is assumed not to

carry any load. All the loads are assumed to be carried

by the fiber, and these fibers are stressed uniformly.

This method has limited use for predicting membrane stresses

in filament wound shell and will not be considered here.

In Orthotropic Analysis, both matrix and filaments are

taken into consideration and equivalent elastic constants

are_. Therefore in OrthotropicAnalysis the

composite shells are treated as homogeneous _anisotropic

shells having above mentioned elastic properties. In

general there are three approaches to theproblem for

determining elastic properties of composites.

In the first approach, known and regulaT _phase geo-

metries are utilized and gross approximations are made to

the nature of the stress field. It is supposed, that the

materials are made up of various combinations of simple

elements which may be in series or parallel with each other.

Many papers are available utilizing this technique. However,

such approach, is by all means, very elementary and should

not be relied upon°

In the second method, the composites are allowed to

be subjected to some simple boundary conditions. The

complete stress field is by solving the boundary

value problem. The average stress andstrain in the

- 7 -



composite are _ by considering the necessary volume

integral, and in this way the effective elastic modulus

which is the ratio of average stress and strain may be

computed. References (4-6) have used this method for

finding effective elastic constants.

In the third method, the variation principle is

utilized to compute the bounds on effective elastic moduli

in terms of strain energy. Bounds on strain energy are

obtained for simple average stress and strain field. Such

bounds on strain energy, in turn, bind effective elastic

moduli. References (7-8) have utilized this method.

II.3 Determination of Elastic Constants

II.2.1 Physical Concept: Unidirectionally reinforced

composites may, under certain condition, be treated as

homogeneous and transversly isotropic material. For

example, if we consider the reinforcement in _-direction

only (Fig 2.3a), we get a transverselly isotropic material

whose axis of isotropy is x-axis. Again if we consider

that the reinforcement is only in y-direction, the gross

elastic property is transversely isotropic in nature

where the axis of isotropy is in y-direction. Hence, at

this point, we can imagine bi-directionally reinforced

composite, as a composite of two phases - each phase

being transversely isotropic. The elastic constants

- 8 -



for the two phases may be determined by any one of the

available methods for determining elastic constants of

unidirectionally reinforced composites. It may be noted

here, in calculating the gross elastic properties of two

phases in terms of properties of fiber and matrix, only

1/2 the volume of matrix should be considered to be

associated with fibers in one direction.

II.3.2 Theoretical Analysis:

The stress strain relationships for the first and

second phase are given by (9),

F_.z=

Y_Iz = 0"44 _Z

o-_z6_ + o22_ + cL2sS"z _- K2e

O)

and,

l

_×= o.,',G_+cL,%o"y+ a_o-z -_ K_e

E;y= o-i_.Gx+ a___s_,+ o.'.2_', + K;e

_:, = o.,%6_ + a(:,_>,+ o.(,_-__+ K:,'e

/

?_ = ass Z_z =oL,%, (_
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The elastic constants C[_j and (kI_• can be evaluated when

the elastic properties of fiber and matrix are known•

Let,

E =

E' =

Young's modulus of the matrix

Poisson's ratio of the matrix

Young's modulus of the fiber in the X-direction.

h/ Poisson's ratio of the fiber in the X-direction

E" = Young's modulus of the fiber in the Y-direction

_i/= Poisson's ratio of the fiber in the Y-direction

= Fiber volume in percent.

Then according to Whitney and Riley (6)

O,l- I/_x

c_44- 2(J-_y_)/e_

Where, Ex_hJ _E >V/Z>

relations.

2 (: V '-'v )?"E "E ('1 -%) 9x

are given in the following

+ E + (_'- E)_

Cz')
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where, I' = I- "I)/ 2_ '_- } L= I- _-2N _

2 Cv- v,) ([1-'u _) E'"A

EC_-x)L'÷ [L_,-,-(,+V)F_.'

w

E =

where,

K I ,

k :[(K%G)K,-(K'-K)_X]/ECK'*G)-CK'-_?_]

K and G in the above expression is given by:

K'= E'/2(I-_'-2v,z)

K.= E/zO-_J-::-P:_)
I

G = _/2 0 +".')

: [(G'_G) +CG'-G)_,] G/ECG"I-G)-{2"GLG)_ ,]

where

G': E'/ZO,v')

For the elastic constants in the other phase, we

' = o,i- _I_'_.0._ 1/_ a

' 92li,,_. o.' 9_,z_./i_.CI_z= - L3 = -

have,

(5)

(6)

(7)

(8)

(9)

0o)

OC)
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Where, Ex2 _ _2 _'Qgzl ; _2 are to be found in

way.

the

Q3)

following

_xz : ?.(-_"-V)_'E"E (I-'A)9_
ECI-_,')L"+ ILk +('i+",))]E# + E

(,I+)

Whe re,

h" = _ - _)"- 9-_)"_

- "I) -

2(V -V") CI -V 2) E"_k

EO-X) L:'+ T.L_+ 0+'V)]E"

05)

C,6)

R2: [(K"I--G)K -( K"-K)G _,,]/[([G"+G)- CG'" G)_]

Where,

_"/zO-"_"--2v',')

[(G"+G')+ -G)_]G/ECG G)-(_"-_] C_,)

Let us now assume that the stress - strain relations

in terms of gross composite properties are given by,

- 12 -



Now, to evaluate the bounds on A_°_ a small cube of

composite material is considered. The strain energy of

the specimen is given by:

V

i. Bounds on All

If the above mentioned specimen is subjected to uni-

axial tension in X-direction, then the strain energy in

terms of gross composite property will be

"U'co._p: 11zA_ _ V

o,-, :

Where,C%is the macroscopic stress on the specimen in the

X-direction and All is the compliance of the composite in

the X-direction. The lower and upper bound on All may be

found out by using the theorem of least work and that of

minimum potential energy (7).
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The strain energy of the specimen subjected to the

loading as mentioned above may be approximated by

C26)

V

where, Ci_ is the summation of the produc,t of compliance

in the X-direction and volume fraction of each phase. If

it is assumed that the fiber sizes in the X and Y - direction

are approximately the same, then,

Therefore, from equation (26) we get,

" C0-11 +Ck,,)_ : _40 -

Now, from the theorem of least work actual strain energy

Ucomp in the specimen cannot exceed _ and hence, comparing

equation (24) and equation (28) we get,

The lower bound of All may be obtained in the following

way. Let us suppose the cube is given a strain in the X-

direction. The strain energy for the loading may be appro-

ximated by,

- 14 -



U: F4/¢ ( Vo-,,+ ,/c_,)dv
V

Now, from the principle of minimum potential energy,

Comparing equation (25) and equation (30) we get,

I

For the bound_ of A22 _ the specimen is assumed to

be subjected to uni-axial tension in Y _-direction and

the remaining procedure is the same as before. For the

bounds of_ A66 , a shear stress or, shear strain

is given I_rTR_ in _ X-Y direction, _l_-

pending ,/pen __he cens t=_nts whose b_n_%s _e to be_=%_-ua_e_.

Rest of the procedure is same as the first case. The

following results are therefore quite obvious.

I !

/

I
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SECTION III

THERMAL EXPANSION CO-EFFICIENT OF BI-DIRECTIONALLY

REINFORCED COMPOSITES.

III.l Introduction

Although considerable work has been done for pre-

dicting effective elastic moduli of composites in terms

of its constituent material properties and volume fraction,

corresponding work done for predicting the effective

thermal co-efficient of the composite are comparatively

small. Some work has been done in this particular field

by Levin (i0), Van Fo-Fy(ll) of Russia and Schapery (12)

of U.S.A. and few others.

Levin derived the relationbetween composite thermal

co-efficient, composite effective moduli and constituent

property. Van Fo-Fy made a detailed stress ranalys_s for

deriving effective thermal co-efficient of doubly periodic

arrayed fiber reinforced composites. Schapery found the

bounds on effective thermal expansionco-efficients of

anisotropic composite material whose phases are isotropic

by using extremum principle of thermo elasticity. Such

method is also applicable for anisotropic composites with

anisotropicphases. Here the method of Schapery will be

extended for applying it to bi-directionally reinforced

composites.

- 16 -



III.2 Theoretical Analysis

As it has been done previously, it will be assumed

that bi-directionally reinforced composite is a composite

made up of two transversely isotropic phases. Let us

consider a cube of specimen under isothermal condition.

We assume the cube to be approximately homogeneous. We

further assume that the phases of the composite are un-

stressed at certain temperature, when there is no external

force present. The difference from the above mentioned

temperature level will be d_naoted by _ . At first, formulas

for effective thermal co-efficient of composites consisting

of generally anisotropic phases will be developed. This

result can be specialized for composites consisting of two

transversely isotropic phases.

The potential energy of the composite specimen is

given by,

V-

Where,_ is the strain energy and/_ is the potential

energy due to external load.

There fore :

v j:l s

0)
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We know,
6

j=1

j-'l

K,: = _:,egC]
6

C_ : _u_j K5
J=l

Applying divergence theorem we get,

C3)

®

v Z b_j_5
L=_ j:l

v
[-e C= q

From (6) we get, the potential density : -_ _uK£E)energy

Now the negative of total complimentary energy from La_haar

(14)

/[_ & & re

o

o o
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If we assume now, that the composite is elastically homo-

genous and anisotropic, then the stress strain relation will

be given by,

6

Therefore the negative of complimentary strain energy in

terms of gross composite property is,

v I:=_ i= l _=1

Where, C= C(e)is a function of temperature.

The potential energy is always minimum for all con-

tinuous displacements which satisfy boundary conditions

and the negative of complimentary energy is maximum when

exact stresses are used. Keeping the extremum properties

in mind, we may write,

6 6

F=I

+iZ
I:=1 _=1

02)
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where, V a and Vc are approximate values of potential and

negative of complimentary energies. The bounds on thermal

co-efficients will be derived, considering the inequality (12).

We will now proceed to derive the approximate expressions

for energies. We assume a state of constant strain for the

derivation of Potential Energy. Such strain may be obtained

by assuming a surface displacement of the type,

Where e.. is constant and e.. = e.. .
z3 13 31

So on substitution of equation (13) in (6) we get,

6

j=l 6=Jj':l

(.14")

Where,

eLL -- eL _.or L= t,2,3

e_. = e6 ej 3 = e5 e3z = e 4

- 20 -



Subscript 1 and 2 indicate the phases, v I and v2 denote their

volume fractions. The value of V a will be minimum for a

strain that may be determined by the equation _---Ve--O.
De6

From the above equation we obtain,

& 6

j=, j=,
-<_ =o 05)

Therefore,

(bj ,O°e + B,:jo3

Where,

Substituting the strain in equation (14) we get,

6

V _

(=g j-I t=t m=_

+ Sit _53_ o-_ oq.
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C= I L-I

Now let us assume a constant stress distribution; the

a is given by,approximate value of V c

o- 6 ¢ 6

i:, J='

Where,

V=I

and

V--I

Where subscripts l and 2 denote the d_fferent phases and

v I and v 2 denote their volume fractions.

(,s)

Linear Co-Efficient of Expansion

For finding bounds on thermal co-efficient of expan-

sion we set _i=O - and all other 0"[--O.

Substituting these values in equation (17) and (18)

we get,

- 22 -



_=1 j-'l L:I m-I

6 6

(_>,:jKj)OeB,:,_ - _, B,L(_,K,)%O]- B,,__
F.=I

or,

A_=I

V_ : - _" 0"" 0 .2 - "K ,o-e

69)
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Therefore, inequality (12) becomes,

l C7_ -, A,,_- _,o'e ÷C <--_a_o--_

- _.?oe- x_e'-+_ b_iK_.Kje_ (2,)

The inequality is rewritten in order to isolate the unknown

function C = C (_) .

Maximizing the left hand side and minimizing the right hand

side with respect to O-we get,

(K, - R,)6)
(C4_- AH')

_ (_,- _.?)
(A_- a_)

- 24-



Putting these values in (22) we have,

(24)

The function C may be dropped out from our consideration

because of the fact that right hand side of inequality (24)

is never less than left hand side, irrespective of the

value of c.

Therefore, from inequality (24) we get,

- K") < o(x, K')(;4,-

Where,

(a,,- a,,_)

x (fi,_-A_D (A_-a_)
L,_jK_5

1&

(28)
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Inequality (24) is satisfied only when KI<_-_.l<_"and

hence K', K"are lower and upper bound of effective linear

thermal co-efficient of composite in X-direction.
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SECTION IV

STRAIN ENERGY EXPRESSIONS

IV.1 Introduction

It has been pointed out earlier that in the present

investigation, an orthotropic analysis will be made; _e.j

the composite shell will be treated as a shell made up of

homogeneous anisotropic material. For the case; where the

reinforcements are in two perpendicular directions, the

composite exhibits the property of a special type of

anisotropy - called orthotropy. Hence for find/ng out the

strain energy expression of shells made up of bi-d±rection -

ally reinforced composite, it is required to find_first,

the strain energy of an orthotropic shell. In the ex-

pression of strain energy so obtained, the elastic constants

are to be replaced by the effective elastic constants of the

composites. However the same problem can be attacked in another

way. The shell mentioned above is, in actuality; a multi_layered

shell where each layer is unidirectionallyreinforced. Therefore

the strain energy of the shell will be that ofmulti-layered

anisotropic shell where each layer is transversely isotropic.

Hence in the following pages, the strainenergyexpression for

the single layered anisotropic as well as multi-layered aniso -

tropic shell will be derived and the results_w±ll be

- 27-



specialized for the particular cases.

IV.2 Brief Review of Geometry of Shells

IV.2.1 Surface theory: A surface may be defined by

the equation of the type X = X(x,y), Y = Y(x,y), Z = Z(x,y),

in which X, Y, Z are rectangular coordinates and x, y are

parameters which are called surface coordinates (13). A

point can be located by the following vector

= x t+ Yj + Zk <0

where i, j, k are unit vectors along X, Y and Z direction•

A surface can be represented by the vector equation

n

• = 0
Surface coordinates x, y are orthogonal if r x ry

where r--x(_y) is partial derivative of the position vector

with respect to x(y).

The square of the distance between two neighboring

points with the surface coordinate (x,y) and (x+dx,y+dy) is

given by

ds_= d_.d_ = A__I_+ 5_dy_

- 28-



where

= X_, +Z_

(s)

From the equation (3) it is seen that the magnitude of

r and r are A and B respectively. So the area of the
x y

surface is given by ff /_5c_c_ .

From the definition of cross-product the unit vector,

normal to the surface is found to be

AB

Second Fundamental Form of Surfaces

ecl_ _ + 2_a_y +9S_ : - _. aA

For orthogonal surface coordinate, e,f, g are given by

q A

A
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Extreme values of curvature are denoted by i/r I and i/r 2 and

are known as principal curvatures. Lines of principal

curvature coincide with coordinate lines, only when the

coordinates are orthogonal and f=o. In that case

Yr : "

Theorem of Rodri@ues

When the line of principal curvature coincide with

coordinate lines, then

IV.3 Geometric Representation of Shells

Let the middle surface of the shell be represented by

X=X(x,y), Y=Y(x,y), Z=Z(x,y), where x,y are orthogonal

surface co-ordinates. Let +z be measured from this surface;

positive z is measured in the positive sense of the surface

normal (see equation 4). Let the free surface of an un-

deformed shell be represented by the surfaces z = +h/2,
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where h is the thickness of the shell which may be a

function of x,y or, constant.

The surface Z = constant in the undeformed shell is

defined by the equation

= _+zfi (9)

Differentiating with respect to x and y one obtains,

respectively,

From the theorem of DupinAit may be seen that if the shell

co-ordinates are orthogonal, the co-ordinate lines on the

middle surface must be lines of principle curvature. Hence

Rodrigues theorem can be applied. From equation (i0) and

(8) one obtains,

00

Now,

2

= <_.a-_, _,jaj, _.za,_)

From equation (3) , (Ii) and from the fact, T_o_ - _9o3%

m

= r_o_=O,

_s"= cx_a_._"t _" + "2"azZ 03)
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whe re,

c_= A 0 + z/r,) 6 = BO+z/,-_::) ",'=l

C<. _ and _ are called Lame' co-efficients.

IV.4 Strain Energy Expression for Orthotropic Material

For convenience let strains in the directions x,y,

etc. be represented by _I _ _ etc. respectively, _e _-£I,

The strain energy density of a hookean material is

given by (2)

Uo =_
L=_ j=t £=I

where _[j°_ are called moduli of elasticity (9),CL% are

thermal constants and _ is the temperature. If the origin

of strain is so chosen that _=O and neglecting the constant

term, we get,

L=l 1=1 t=-_
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For orthotropic material (9)

= _f6 -

07)

Hence the expression for strain energy density

IV.5 Strain Energy of an Orthotropic Shell

For a shell co-ordinate the strain displacement re-

lations are approximately given by .(14),

t

Yzx = Rz + LO-!__ otz__
c_ o<

c,9)
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Where u,v and w are displacements in x,y and z directions.

Now it is assumed that the transverse shearing stresses

_z , _yz vanish which gives _z = _z = O . Also it

is assumed that LO does not vary much with z and hence is a

function of_ and _ only. So from equation (19) we get,

_ + = O +--=O

Noting from equation (14) C_-- A CI+zlG_, _ = B(l+Z/ra)

and _- J, we get from eqn, (20) ,

From the condition u=u and v=_ at z_o we get,

A B

From equation (19) and (23) we get the strain components as
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I

@47

Love (15)proposed that equations(24) can be linearized in z.

Then,

_'z: = ex "t'zKx 5-- ey+,,Ky _x_ = e=j +z kxj

Where ex, ey and exy are the values of _x' _y and Exy on

the middle surface of the shell.

Setting z=0, we see from equation (24)

0.,. 9Ay b0 C0#
e__ + +-- + __

A A B r_ 2A_

%,: 9_ _.B. _ _4

w

KX, Ky, Kxy are obtained from equation (24) and (25) and

they may be approximated (14)as

- 35 -



I_ (__1) Axoo:,

A_B B_

(18)

Now putting the values of ex, ey etc. in the equation

the strain energy density becomes:

Now, if the volume

is approximated

Total potential

element of the shell C_x_y4Z

by ABcl'_y4z then,ff /_/2
energy U= j] A S _@ 4z

- h/_

ex + C 2ey) 0o . (C,K:{ + C2K:_) e,] AB:Ixcly

- 36 -



where

h/z

_o : [_dz
-v,12

VVz

O, = [gzdz
J

(_)

To check that this expression reduces to standard expression

of isotropic case we proceed as follows.

To evaluate bll, b22, bl2 etc. in terms of

observe the following relations:

(_£j_ , we

From which we obtain,

a.,,o_ - a& 0.,2.. E_- @ ( K,0..2.2.- K_a,2h

O.-_z- Q.t t 0.2...2.
(K_O.._l.- K20,..a" E>,- {9 _ Oo._O-2z-o& &_.- a. ,z)
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Cl =

o.i_/ Cc.,c<,__- cd_

(K,_,,- K,a,,) / Ca,,c_,-_-_.)

For isotropic case,

/ (.4__- o.,,_,,7

Cl_l : I/E Ct4z : -n)/E O.z_.: I/E K_ : K2: K

There fore,

b_= b_ = E/0--__)

b,2 : _E/C_-)

_366 = G

CL=c:=KE/Q_v)

Substituting these values of bll , b22 etc. in the

equation (29) we obtain the strain energy expression,

O-_) : * (_:_+,y) e,] ABd_dZ
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The above expression for strain energy is identical to

that given by Langhaar (14)for isotropic case.

IV.5.1

Shell

Let X,Y, Z be rectangular co-ordinate.

surface of a cylincrical shell is defined by

X-- -z Y- czslr,9 Z = c_r_,9

where, x and y are surface co-ordinates as shown in

Strain Energy Expression of An Orthotropic Cylindrical

(6) and (7)

rI - oO T_=_

Figure (4.2).

From equation (3) ,

A-I B=_

The middle

Strains of the middle surface of a cylindrical shell

as obtained from equation (26) are,

- +
2
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And from equation (27), for a cylindrical shell,

Putting the values of ex, ey, Kx, Ky etc. from equations

(31) and (32) into the strain energy expressions given by

equation (29) we get,

Strain energy U =_f/ /_It (_+ _x_)_

+

+ _-+ bll 2

o._ o.z .l
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_ [C_co_ + C2_J]eIc_ixclyo...j f
(.33_

IV.5.2 Strain Energy Expression of an Orthotropic

Conmial Shell

Let X,Y, Z be rectangular co-ordinates. The

middle surface of a conical shell with the vertex at the

origin is given by the equations (see Figure 4.3)

= _COSO_

From equation (3) ,

Y -- _csi_si_y Z = zsino_ _y

(6) and (7), we get,

A: 1 5 = _sino_ q = oo G: 7._nc_ (30

The strains of the middle surface of circular conical

shell as obtained from equation (26) are

e_ - _r -- + +
S_nCX _- _.tancx 2_sin_
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x s ind x + (:36)_Sind

From equation (27) we get,

K_ - - o3x_

x OOyy

X Z 25 in_

K?_y - 2 O.)y _ 2 co_y
Z= S_'n(_ OcSCn cL

Putting the values of ex, ey, Kx, Ky etc. from equation

(31) and (32) into the equation (29), we get,

Strain energy U = I b29 ( 3)9

XS_nok

+
9cS,'n_ _St'mo_ _- +

U0
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C3B)

IV.5.3 Strain Energy Expression of an Orthotropic

Spherical Shell

The middle surface of the spherical shell with the

center at origin is given by the equation (See Figure 4.4),

Y= o.Sin0ccos), Z = C_coSX

where, a is the radius of the middle surface, x is the

colatitude and y is the longitude.

For spherical shells,

A= & B= &sin_ %=r_=-_

- 43-



Therefore, the strains of the middle surface of the

spherical shell are given by

e_--- - +

_SinX _Sin _ O-

e-_y- K-- + .... +
_ISi_ _c CISf_ 9c

Kx, Ky and _xy are given by

00_x

Kx- GL_

Cosec ¢Oz - LOy_
K>,- a_si,_ " a.,-scex

2 [ co5ocK_y =
o?- S;n'z. SM. -x.

From equation (29) strain energy for an orthotropic

I _oll
spherical shell are found to be U - _ Cu
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+ 2-_ + 1,22 + Ccco'l:_: - (._

0,.
+

+ +

__,Z+ _.c_x -_......O- ' +
_ 77

+'//[
+

' _ ' , 0.,. _ -
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IV. 6 Strain Energy Expression for a Transversely

Isotropic Material

For transversely isotropic material we have the

following relations (9)

b,_. = b_s = b,_, - ba4- b_5 = b_6 = ha4 = has = b3_,

= b45 -- b4_ = b56= o

Also,

b_s: 2 (b,,- S,_)

So from equation (16) strain energy density expression

for transversely isotropic material becomes,

" '1 [

IV.7 Strain Energy Expression of a Transversely l_tropic
_o

Cylindrical Shell

A look at the equation (18) reveals that strain energy

density for transversely isotropic shells will be the same as

that for orthotropic shells.
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IV.8 Strain Energy of a Multi-Layer Anisotropic Shell

The anisotropic shell considered here is assumed to be

made up of N number of orthotropic layers. One of the axes

of symmetry of these layers is always normal to the surface

of the shell; others are arbitrarily oriented. Let us assume

that the axes of symmetry of any particular layer C_,_ make

with x and y respectively.

Assuming a state of generalised plane stress in the

nth Lamina of the shell, the stress-strain relationship will

be given by

b,2 _6 (_) £i(_)_ Cl¢")

where subscripts l, 2 and 6 to the stress-strain tensor

indicates corresponding quantities in x,y and xy directions

of the shell co-ordinate respectively.

(n) (elastic co-e fficients
bij can be obtained from bij,s

in the principal direction) by the transformation law

given in Reference (9).

*These terms are zero for orthotropic or transversely
isotropic layer.
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Thermal co-efficients Kl(n) K2(n)I

obtained from the following relations.

and K6
(n)

can be

K, CosZc# t K2 s_

_<(_

i<(_)

where KI, K2 and K 6 are thermal co-efficients in the

principal directions.

Total potential energy of nth layer is given by

Uo : ABdx_j VoJ,
k.

4 bl_ex + u_z ey + b65 + ex ey
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+ 2bl2 Kx K,v + 2 b_,_ Kx K=y

where,

0 = f@_z

h_

/_zdz

h

Total strain energy of the shell will be given by

N

U- Uo
n-I

- 49 -



Section V

THERMAL STRESSES IN SHELL

V.1 Equilibrium Relations

The following stress notations are used. The stress

is normal to a plane perpendicular to x-axis; the stresses

-_ _)are tangent to this plane and directed in y and z

directions, respectively.

Love (15)derived the differential equation for any

orthogonal co-ordinates. For shell co-ordinates, in the

absence of body forces, Love's equation becomes,

o,

a-z _-y U'x =0

_z

O)
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In the investigation of thermal stresses, small dis-

placements will be assumed, such that effects of deformation

on equilibrium equation can be neglected.

In the equation (i), C< and _ are Lame' co-efficients

and they are given by the following equation.

o<= A(,+ z/_,) __- 6(,+z/r_) (_)

Figure (5.1) represents a differential element of a

shell, cut out by surfaces x=constant, and y=constant.

The variable x, y and z are orthogonal shell co-ordinates.

The tension (Nx,Ny), shears (Nxy, Nyx, Qx, Qy), twisting

moments (Mxy, Myx), and bending moments (Mx, My) per unit

length of the middle surface may be expressed in terms of

stress components(_, _j, _y,%zand _.

The complete set of relations is,

_/_

U._ = / o"_C'* z/%) az
-_/2.

u,/,_

a>, = f o-_ (,+ z/r,) az

- I,V..,_

f k/a
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M'_ ---

- hl_"

f h_

-h_

k&

/ e. z('+ zl',)dz
- hll

_1_..

-hll

c_Z

-h/_.

m
m

h/z

(_)
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These representations of tensions, shears etc. are

similar to what Fl_gge Q_) used.

The complete set of equations derived by Langhaar (14)

is i

+ ABP_ - O

t A5Py = O

a_ _y -- _ Nx - A_Br__Ny

- AB_x _ ABly = O

-ABly -ABRx-O (4)
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The equation (4) is supplemented by the identity,

V.2 Strain-Displacement Relations

Strain displacement relations for a shell has been

discussed in Section IV. In this section we will assume

those relations. However, for the problem of thermal

stresses, the second order terms in the strain-displacement

relations will be neglected.

V.3 Cylindrical Shell

Until now, the discussion made in this chapter is for

general case. Now the particular case of orthotropic

cylindrical shell will be considered.

For a cylindrical shell strain-displacement relations

are given by equation (31) and (32), Section IV. If we

neglect the second order terms, these relations become,
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by,

The stress-strain relations for orthotropic.shell is given

= b,,E_ + bi2£y -C,e

Substituting (6) and (7) into (3) and noting that r I = co

and r 2 = a, we get,

h12.

N_,,--h[ _,,,.(-_,,+_,/_.)]
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h _

cL co__y,_ _ b ll us_x:o.]07" /

- fc_@(z + z_/o.) az
-v,/z

My =
- b 12h..._3OOz_

h_
M:r.y = i__--_

I%

_ _._
L_.o_. 1"077

Wa

- fCzzEgdz

- hl_"

Myx. = - _____?

For the case of axi-symmetrical loading and boundary

conditions, Nx, Ny etc. take the following form.

_hl_-

- __b,__-Jc,e 6*V_)a212.0-

N_:), -O

- 56 -



N_-_ - 0

h 3
(_/_

k/:z

k_bi__L_zx - ;C__z _cIZ

- h/_

Mmy -0

_Ayx =0

<q)

The &quilibiri_m equation (4) for axi-symmetric case

of cylindrical shell is reduced to

9Nz _M:z
b-x - 0 -- Q.:x. =0

"_Ox
- NY/o-+ Fz = o

0o)
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From last two equations of (i0) we get,

If the shell is considered to be homogeneous, then

bll, bl2 etc. are independant of position. Now, substituting

equation (9) into (i0) and (ll) following equations are

obtained.

512 03_ + C[ (__

- _12-

c,e z

- 0

12. b_l 0,.z 19_o. bl_ o-. b,_ h

._ k/2.
/

b,2 k_" bO_ I-L- I'%.ed "z
b_, Izo- 2" _ - 0ub_l I_

-I_/_.

=0

(Iz)
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The equation (Ii) and (12) are the equilibrium equations

of an orthotropic cylindrical shell in terms of its dis-

placements when the loading is axi-syn_netric, Solving these

two equations u and w can be obtained and from there,

thermal stresses can be computed. In the following pages

few simple cases of temperature distributions and boundary

conditions will be considered and the corresponding thermal

stress problemgwill be solved.

For the thermal stress problem three diffferent

temperature distributions will be considered - they are:

(a) Temperature varying along the thickness

of the shell; T = T(z)

(b) Temperature varying along the generator

T = T(x)

(c) Temperature varying along the generator

and thickness; T = Tl(X).T2(z)

Attention will be focussed only into simple supported

case where the axial displacements are not prevented.

From equation (i0), for axi-symmetrical deformation,

we get,

----- = O

_m
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Therefore, Nx = constant

For simple supported case Nx at the end is zero

(since, there is no net axial force); thus Nx = 0.

Now, from equation (9) one obtains,

b,2_ hz00xx I
LL_ = - -- + + --

0-bll I'2.0- hbll CLeCI, z/_)az

-h/_

Substituting the expression for Kx from the above

equation into equation (12) and considering no mechanical

load present, we get,

= occe' 

where,

56

£_(,2_- h_)
CIs)

3 blz

b,,(12¢x_ -_)
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_Co] = 1¢4o._ I _

k

12a.bil

h/_

_h/__

/- '
-h A

c,e az
- h/_.

I /_l_-a-b,,h dze clz.

The general solution of the equation (14) is given by

53 = e
E B k Cos _-'_t_= _,_

+ S_s;_41_+_x l

+ e

+Wp
cJs)

Where Bl, B2 ' B3 and B 4 are arbitrary constants which

can be evaluated from boundary conditions; Wp is the

particular solution corresponding to the temperature function.

A few temperature functions and related thermal stress

problems have been considered in Section VII.
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Equations (ii) and (12) are the equilibrium equations

for orthotropic cylindrical shell, developed from general

equilibrium equations (i) given by Love (i). These equations

are rather difficult to handle, except for a few particular

cases of boundary conditions. Apart from this fact, since

the buckling criteria will be established using the strain

energy expression given by equation (28), Section IV, we

will develop simplified set of equilibrium equations, by

setting the first variation of strain energy equal to zero.

As before we will derive the equilibrium equations for

axi-symmetric case and without any mechanical loading.

For cylindrical shell, middle surface strain-displace-

ment relations in axi-symmetrical case can be approximated

by,

Therefore membrane stresses will be given by,

Os)

C9)
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Where _, temperature of the middle surface.

Considering the strain energy expression _ given by

equation (28), Section IV, the first variation _, because

of variation _ and _ is given by,

Czo)

If the shell segment is limited by x=a, x=b; Y=_I

y= _ the integration by parts yields,

_Jb,,_ - c,e, _oo_/ o._j
19-

(._oI _=o.
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t hS _5I___ _.I_=1__

{I
9C=_

h5

For the system to be in equilibrium, the first

variation of potential energy must be zero. Therefore,

both line integral and the surface integral must vanish.

By equating the line integral to zero and replacing _x,e_
i

etc. by u, w and their derivatives, we obtain the following

natural boundary conditions.

Along the circle x=a, x=b

[ b,,___+ b,_/o. - C,eo/h] S_ = o

hS - 0[a b.,_,:,:. c,o,-],s_,..-

[l_,z b,, _= t Cc, s,)x] _b : o
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The equilibrium equations are obtained from the

vanishing of surface integral and they are:

CL_

+ C2eo/_ = O

If we integrate the second equilibrium equation, we

get,

_b,, 5_ + b,2_ - cLc,eo/h = Z C24_

(A) Simple Supported Case

Considering the first boundary condition of equation

(21), K=0 for simply supported case. Therefore, _x can

be written as

Substituting this %_x in the first equilibrium equation

(23) , and rearranging we get,
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+ blzc,go
abel

:0
Czr_

If C 1 is independant of space co-ordinate, then we can
£

write the above equation in the following form

where,

J

k_b,,

i_- (c b,zc)
h'_ b,i o. b,,

General solution of equation (27) is given by

-Kz
CO= e

where, B1, B2, B 3 and B 4 are arbitrary constants to

be evaluated from boundary conditions.
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We note here, in both the cases where the temperature

is function of x or z alone, the term AC6_L_c_c

vanishes. Therefore equation reduces to

tox_xx + 4K40o : Azeo

(B) Fixed End Case:

For fixed end case the following condition is to be

satisfied,

O o

From the equation (24) we have

Where K is a constant and can be evaluated from the

boundary condition (31). Substituting the value of Ux

from equation (24) into (23), we get,

where K, A 1 and A 2 are given by the equation (28).

If the temperature distribution is a function of x or z

alone, the equation (32) reduces to,
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O0'x.'x..xx + 4 K_'_O - Ame o - ?'YZbr_ (s3)

Particular cases of temperature distribution and re-

lated thermal stress problem will be discussed in Section

VII_

V.4 Thermal Stresses in a Conical Shell

For a conical shell strain-displacement relations, as

given by equation (36) in Section IV, are as follows:

6x = _x -zOOx_

Substituting these strains in stress-strain relation

(7) and considering an axi-symmetrical case, we get,

_ -C, e
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Substituting equation (35) into (3) and noting that

r I = _o and r 2 = xtan_, we get,

_ I:,,.co.Ix')

h/z

,__
- h/2

-h/_

N_j =Njx- Mxy = My_ = o

h 3

12"_ "th i,i o4 bll _x. + bl_.__.. + br'> _...__. 1:x-.. i_e..'t'_i,_Ot

1.1z

_C_@ z zg

-_/_ C3_)
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For conical shell equation (4) reduces to,

D

C"__,0

08)

(39)

From (38) to (39), one obtains

_='" _ _j =0

Substituting the values of Mx, My, Ny and Nx in

the equation (37) and (40), we get the following differ-

ential equations:

L 12 j + ----- +
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---- + _. _ b_._.z2k -f F,Ce)=o
(40

(4_.)

where,

F,(O) =

-_/_

-t-

61z

-61a.

÷

k/_

/C_.e dz
-ha_o_

-I_/_- (43)
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.,[ c_.e dz

--h/__

_44]

Equations (41) and (42) are frightfully complicated

and no effort will be made to solve them. In the following

pages simpler differential equations defining displacements

of conical shell will be developed. Instead of deriving

differential equation for axi-symmetric case, a general

case of deformation will be considered with arbitrary load

and temperature distribution. The equation will be derived

following Hoff's (18)work. Hoff derived the equation for

isotropic case subjected to mechanical loading. In the

present case thermal loading will be also present and

shell material will be orthotropic.

Deri_vation of Simplified Differential Equation

for Conical Shell

The present derivation will be restricted to small

cone angle and truncated cone.

Considering small cone angle the membrane strain-dis-

placement relations can be written as,
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e_ -_

The curvature can be written as

I£,y = -- OOyy / .'X.zS_mzo_

K:r.j = - 2_COxj / _ S _n_

We note equations (45) and (46) differ considerably from

other previous strain-displacement and curvature-displace-

ment relations. But the effect of additional terms are

appreciable when cone angle is not small.

The middle surface stresses will be given by,

(46)

e:_y= b_, (v_ +%_/_,,_)
(4"0
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The total potential energy of an orthotropic shell

is given by

A/ = 7/+/1

where _ is the strain energy and _ is potential energy

due to external loading.

The strain energy expression as given by equation (28),

Section IV, can be separated into three parts _,_b _,

where,

ff_Sm : _ [b,,e_+ b_2e3z÷ b66e_j +Zb,zez_] hASaxdy

tc ej>eo.(c,K Asa.aj

For a cone, A = 1 and B = x sina(

The condition of equilibrium will be established by

setting the first variation of the total potential energy

equal to zero. In the derivation it will be assu_ned that

the temperature distribution is independant of radial

co-ordinate and therefore, _i = O.
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The change in membrane and thermal energy _7_7_ t_e _

caused by variation _u, _v and _w can be written as,

_Cts_+o-_')- l.,.;f [_-:<.D_.:<-_C0",_i-_s_,_o<')s5

If the shell segment is limited by the line x=a, x=b and,

y= _y= _,then integration by parts yields,

+ a <%_._. % _c<.)I_:,, a:<_

b ko,.

a,., _i

for _7_, one obta'ins,Similarly,
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b

fl I41_t,t_ _:cy &cO_: gx
::s;---__ _ : _,
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To find the $/i , let us consider that the surface loads

X, Y, Z force per unit area, are acting in axial, circum-

ferential and radial directions.

Therefore the change in potential energy __CI of these

loads during virtual displacements is

FOr the system to be in equilibrium, the first variation

of potential energy must be zero. One of the requirements

for the equilibrium is, therefore, the vanishing of the

line integrals. From there we obtain the following natural

boundary conditions.

Along the circle x=a and x=b

_ + _>/_s_ t _ = o

I ocSi_okbll_zz + blT_iDyyl_si¢_o(t $o33c --0
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Along the generator y = q_l and y = _0_

[b12_= + bz_C_ _ +__)/_s;_ - c2e I &_ =o

_ + _J/_s"'_ t `%_"= o

f bz2 to:_,_ b,2 u0x_ I _co) = o+
)

The second condition for equilibrium will be that

the sum of terms under the surface integral which are

multiplied by_(_,_,_)),must vanish separately. From there,

the following three equilibrium equations are obtained.

÷ bz2
_.3yy yy

Css)
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The last of equation (55) can be written as,

'! cos_ zsi_c_o"j _ (12z) _zS,n_._= 0h_
(s6")

where,

rjT)

Substituting the stress-displacement relations into

the first of two equilibrium equations, we get,
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From equation (59)

From equation (58)

I
_5_ = -

Equations (58) and (59) are first differentiated with

respect to y, multiplied by xsin and then differentiated

with respect to x. In the expressions thus obtained, the

values of Uxy and _xy are substituted from equations (60)

and (61). After re-arrangement these equations can be

written as,

I"

co$o_ _ =_ (_
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b_b22

(b_z + b_ c°_:_ + b,: (xs,_c_ co_:j)_ (zs,,_) 1

n ÷ b&6 C2 @y,,v.v

( b,2 + b_)

(_z)

end,

- b,a bzz

b6_;+ b_l

bzz-X

"K-
+

+( :z's,',._...___Y,)_:s,'._
k

_ t,_._ x s,_ o_ [-zs,,,,_ (_'-_;.:'a X)x 3
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where, the operator El(Z) will be defined as,

t

bl2. + b(_

Now if the operator G 1 is applied to each term of equation

(56), then with the help of equations (62) and (63), one

arrives at the following differential equation,
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C6 )

Equation (65) is a differential equation in w alone.

This equation may be solved for w and the expression for w

thus obtained may be substituted into the equations (63)

and (64) to get _ andS.

For axi-symmetrical temperature distribution without

any mechanical load, equations (64) and (65) becomes,

Ca,(_.3 : _ bl_. b6_,
(b,z+b66)

- 83 -



and

+. 12.b6r_ Coso([Czb11-C,b,2_x

where Gl(Z) and G2(z) have now been reduced to,

0,%)

For isotropic case the equation (67) reduces that

given by Hoff and Singer (19), except for G2(z). The reason

for that is a more accurate expression for curvature they

used in their work.

Equations (66) and (67) can be simplified and written

as

b,, (..o:O.z') z = - bl2 co'l-o_ cO:_ -t- Cl C:cgD:z
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and

G2(_)

Equation (71) can be written in the following form,

h_ b_ 5_'_2_,

It may be convenient at this stage to use non-dimensional

form of diplacements and distance (See Figure 5.2).

Let,

m

_ = X/CZ

F_ - F,.Io.

_=_/_
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Then equation (72)can be written as,

"x Oo_:_c_ + 2__C0:_._. - 154 ¢/_ = C_6)

where

_4 _ CL2-B/4

C - ct-ze/

For homogeneous part of the equation (74), an

approximate solution in the form of asymptotic expansion

may be obtained by the procedure suggested by Love(l).

Let,

_¢ = e_z(_z ''++ o.z-v' +

where,

3/4.#b z c -_ ...... fl

c..7_)

Z - rn.7"_.

Substituting this equation (74) and setting right

hand side of the equation equals to zero, we get.

_4 e 4-_ I V4 -u4z , (.0.-4") z -f- ([b- so. - 9/_) z-s/' +

(c - 12.b 4-
2. 16
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÷ _z-v4+ C4_-6)z "3/*+ (4b-_s_ -_3)z-_/÷

- 7/4. J+ ([4c -3oh - 3_o- + __/_-) z + ......

Equating co-efficients of z-I/4 to zero, one obtains,

_4_ 16 B _ = O

= 25,-2-15, 2.B;. ,-2BL
D'I- i ;-, 4

Equating _e coefficients of z-3/4 Z-5/4 -7/4t ,Z

respectively to zero, we get

_= -5/_

C = _9b/'2. - _4-o. - 2...-.%1/16
(79)

For a thin shell three or four terms will be good

enough. The complementary solution of the equation after

little manipulation can be written in the form,

_,Dc "= RiLl "t" RzLz + I?-sLs+ la4L4"
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where,

Ll = e L_ +-- +-- + --
J

zB

, _-_, (_¢_- _,4m'} t- c'2--5/4

2..B

.y__-¾
* (::_,>__s"'#'_-3/4")* cf_/"

For the particular integral of equation (74), we note

that if the temperature distribution can be represented by

a polynomial, the particular integral may be obtained
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easily by the method of undetermined co-efficients.

The arbitrary constants R1,R2,R 3 and R 4 , can be

evaluated from boundary conditions. Once w is determined,

can be determined from equation (70). For simple

supported case equation (70) can be written as,

From boundary condition (54a) in case of simple support

where there is no axial restraints,

G=O

The different stress can then be written as,

m
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We note _x-O is a consequence of approximate nature of

middle surface strain assumed.

For the fixed end case, the boundary conditions will

bet

Also, there will be another boundary condition

t_i I,[

/ /-exdx = u_ gx = o

I I

From equation (86) the value of G is found to be

m

I.-t-L

I -., b_l "i 5_L

I

(87")

and the axial stress will be given by

G b_
(_"Z ---- -----

.1,1

Dr.
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SECTION VI

THERMAL BUCKLING OF SHELLS

VI.1 Introduction

The theory of buckling deals mainly with the conditions

under which the equilibrium ceases to be stable. A class

r of unbuckled configuration, corresponding to a range of

values of a real parameter p is first considered. This p

may be a mechanical load or a thermal load. For each value

of p in the range of interest there corresponds a single

configuration in class r. In the classical problem of

buckling, the configuration in class r is stable when p is

small. But when p is increased to a certain critical value,

configuration in class F ceases to be stable. The problem

is to determine the critical value of p.

VI.Iol Energy Theory of Buckling

The energy theory of buckling propounded by Bryan (20)

was based on the law that a static conservative system is

in a state of stable equilibrium, if and only if, the

value of potential energy is at a relative minimum.

According to the principle of virtual work, for any

equilibrium condition, the first variation of potential

energy_ vanishes. If in addition, the second variation

of potential energy is positive definite, the equilibrium
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is stable(l). At the buckling load, _V ordinarily changes

its character from positive definiteness to negative definite-

ness, negative semi-definiteness or indefiniteness. Thus

it may be anticipated that _ is positive semi-definite when

the buckling load is reached. From there it follows, that

during buckling, there exists non-zero virtual displacements

for which _=0

The total potential energy of a loaded structural shell

is the sum of strain energy and potential energy due to

external load. Since we are only concerned with thermal

buckling, we will consider strain energy expression as

total potential energy expression. In the following para-

graph, an expression for second variation of strain energy

which is applicable for buckling analysis of shells will be

developed. In the development of second variation expression,

non-linear stretching of the middle surface will be con-

sidered. Since it will be impractical to consider all the

non-linear terms, certain assumptions will be made to

simplify the second variation expression.

The strain energy expression for an orthotropic shell

is given by equation (29), Section IV,

u- Ub+Uo
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where,

((.

O)

Jf
(;L)

where, (_)

I,,/_. I,,/z

0o = f0dz 0,- /0z_z

-hA -_/z

A look at equation (26) of Section IV reveals that

the middle surface strains can be written in the following

form:

2A _-

2.B z

AB (5)
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where _x' ey and exy are linear functions of displacement

components u,v, w and their derivatives. The curvature

Kx, Ky and Kxy are linear functions of the derivatives

of w.

In order to determine the second variation of strain

energy, virtual increments are given to displacement com-

ponents. The terms, which will be quadratic in these

virtual displacements, will constitute the second variation.

Thus the change in potential energy can be written as

@)

The second variation,

- +2 *+ b66 e_ A 5

+,_j/ [ b,.,(_K:,)'+b,_(sK_/+ b,,(_K=_
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The above expressions are obtained from the consid-

eration that the prebuckling displacements obey the linear

elasticity law. Thus the squares and products of pre-

buckling rotations have been neglected, since they are

very small compared to prebuckling elongation and shear.

Considering the second variation of membrane energy,

the terms given in the bracket [ ], which contains pre-

buckling rotations, will vanish if there is no bending

present in the pre-buckling configuration. In general, for

long cylinders, the individual terms in the bracket [ ] are

small if compared to other terms in the second variation

expression, but may not be small enough that they can be

neglected. However their net effect on the entire surface

of the shell is small.

Buckling Analysis

For buckling analysis ex, ey and exy are to be expressed

in terms of u,v, w and their derivatives. _6x,_%_L_x,_ etc.

can be expressed in terms of u' ' ',v , w and their derivatives,

where u' ' w',v and are buckling displacements. Now certain
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buckling displacement functions are to be assumed. For

simple supported case, the displacement function can be

approximated by,

N

ZL/. = cosm_ U n cos nlr_

N

N

cos _9' Z Wn S,'. n_'_
n.-| L

cs)

The vanishing of the first variation of total potential

energy yields three equilibrium equations. From these

three equilibrium equations, after certain manipulations,

U n and V n can be expressed in terms of W n. At this stage

u',v' and w' are substituted in the second variation ex-

pression.

Also u,v, w etc., as calculated in terms of _ from

prebuckling equilibrium equation, are substituted in the

expression for _2U.

Thus after integration we obtain,

N N

p=l n=l

where, Apn contains e terms.
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The condition for the limit of positive definiteness

of the quadratic form is that the determinant of the

co-efficients be equal to zero. Therefore, the buckling

problem reduces to an eigen value problem. The value

of N depends upon the accuracy desired and is to be de-

termined by trial. For most cases results converge very

rapidly.

There may be another way of looking at the buckling

problem from energy considerations. One considers first

the change in potential energy_from a peculiar state of

equilibrium which exists at the incipience of buckling.

For equilibrium, the first variation of potential energy

must be zero. If the first variation of ZkT_ is equated to

zero, then a condition for which buckling configuration is

an equilibrium configuration is obtained. This condition

in turn indicates that the prebuckling configuration is a

neutral equilibrium. The condition for buckling is obtained

in the following way. The change in potential energy is

expressed in terms of Un, V n and W n by substituting the

assumed form of buckling displacements given by equation(8).

The integration is carried out to arrive at an algebraic

expression involving unknown coefficients Un, V n and W n.

The requirement of zero variation of the integration is

hence replaced by minimization with respect to Un, V n and
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W of the algebraic expression.
n

This leads to a set of

simultaneous equations the number of which depends upon N.

Non-trivial solutions for U , V and W exist, if the
n n n

determinant of the co-efficients in the above mentioned

equations is zero. N can be increased and hence the order

of determinant, until the satisfactory convergence is

achieved.

VI.2 Thermal Buckling of Cylindrical Shell

Considerable work has been done in the field of thermal

buckling of isotropic shells. Hoff (21) and zuk(22)considered

the case of uniform temperature rise and solved the

buckling problem of a cylindrical shell which is restrained

circumferentially but free from constraints in axial direc-

tion. The case of cylindrical shells subjected to axial

temperature distribution has been solved by Sunakawa(23).

The buckling of cylindrical shells heated along anaxial

strip has been studied in a series of reports (24-25).

In this study instability of orthotropic shells sub-

jected to a temperature distribution will be considered.

Investigation will be made for two types of boundary con-

ditions - simple supported and fixed end.

Temperature distributions for which buckling criteria

will be investigated are assumed to be axi-syrmnetric. The

temperature will be assumed to vary axially or radially.
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The buckling criteria will be determined by enforcing

the condition that the change of potential energy during

buckling is minimum. Neglecting the higher order terms,

the change in potential energy during buckling can be

written as,

2." t

,f/+24
o o

Ou_ 0o)

where,

0')

- 99 -



e and e indicate middle surface strain. The bar over
x y

the quantities indicates quantities prior to buckling. We

note that expression /x_ is quadratic in terms of displacements.

The absence of the first order terms lie in the fact that

pre-buckling configuration is an equilibrium configuration.

We also note /k_ contains pre-buckling rotations.

(A) Simple Supported Case

At this stage we assume the following functions for

U.= cos my _/_ UncosnTr_c
m--I

N

,Sl'_y Z V n S;_nTF_

n=l

lq

Cosm,y /_- _JVn Sin n11"x

where, m is an integer. Such a solution describes a

buckling mode with m circumferential lobes.

Substituting the displacement functions in change of

potential energy _and integrating, the following algebraic

expression which involves Un, Vn and W n is obtained.

N N

2Q _ 2 L_" n
r_/=l "n.:_
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+ b,_.__2W, Ww + b_--3rr, V_ W,_, _ g_ r_'_ _"V,-,V,v
2.0,z 0-2 2L _

466_ bzz rn4 W,,,W,,' -f- b_2 n_-_rr w,,_.j
m_'nn'11'2/Wv,,W,,, + 20,.W _aL_

2o}.t _-

24- 4o- _, WnW_ + _'212b"'n'3 h.o-K.Hr...,.,,

!3,_W,.,, + kc_"b_m'rrZl<r, ' _4_V,., W_,
2o, L ,,' 2cxE

Os)

where,

ck - o.b"_
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2

L'- (-,_
(-I

+ Bte J

+

H-

5=e L

+ 5_ e _t

, 53 e _t

_t
+ B 4 e

+
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i-
B_K -V

BIK

21 K;+ (K*_O_}
+

H-
B2CK+Z_Q B3K

+
54(K-_c) t

z_l= C'o'-n')_r/t <',6)

(17)

_,= _ Q_)

Fo_ n' # n C,e)

n

H2
rw

[C_+z_L)s_',_CK÷AOL - KCosCKe"_)P.]I
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+ e
2 [m_+C_C+m)=]

2 [K_, (_ -K__]

+ e KL

+
[[K-Z_i) SL'n CK-Z_l)t + KCoSCK-4C')I_

e1_t

I zxC_- K
Z_C-< +

K

: [ K_+(K-_O_]

K
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Minimizing the change in the potential energy expression

given by equation (13) with respect to U , V
P P

by setting D_]J _ All _A]J

DUe _Vp _Wp '

and Wp; i.e

"t'L: I, 2,

(A'o,Uo+ <,V,, + C',,,W,,] :0

N

,"1.: I,Z

,,, I/V,,.,) :o

N

_= 1,2

1"4

_:|,?.

+ c_,w,.):o

.)

N

h:l,2

, cLwo)--o

N

rl-1_2

+ c_.wo)-o

txO

- 105 -



where,

, _,,.%p_ + b_ =g_
'_np - Q2 03- @2)

Blnp - - ( b6_,mn_ + _p (a3)

OA. _.

P

/X,_p = BIe,.,.

c_r _,_,,, ,- b,_,_ H_- _ + -
OL_ p O_l_ n

_)

@9)

c_r a, + q
4 bg6 _"lzn.pTrz"

b2z-_ 4
+ +

Oc_

+
I'L

"lq..brz'rrK. _ _.
O, Lz P

+
(:XLz n (3o)
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It may be noted that the term H_ takes care of pre-buckling
P

rotation. SettingS2=0 a buckling criteria, that does not

consider pre-buckling rotation, can be obtained.

Neglecting the effect of pre-buckling rotation, when

N=2, the buckling temperature can be obtained from the

following equation

Be_+ Ce + K =O

The constants B, C and K will be given by the

following equations

B: (G2, - 03)

_ * cl,"_'- c,=_,,,_+ _ ,_)c : G_,(c,,_A,, ,, %,_,__
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3)

-I-

where,

D2B -C _ a,
z 32- c_ ,,_, +cg a:_ 3 33

- D_Iz___,)
_,)

(r;:,,)/_

: (Y;-=)/o

_-(y ;:==)/o

Ca_)

05)

_Pis a fourth order determinant obtained from basic

determinant (Equation 22) by eliminating the last two

columns and eliminating rows containing elements F_r'

and _l_m" ,

P P
_y- n.b,;._'KH?.- p_;.TFK._Ai
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If the effect of pre-buckling rotation is neglected,

then because of the presence of Kronecker delta in the

co-efficients of Un, Vn etc., it is possible to express

the buckling criteria in the following form:

tel _r S I ' D
, $2 5 3

tR2+ S_ S z3

Ss z
53 tR3_r S_

-- 0

where,

R
= (- A 2 b,2522mn.rr

Yl19 - _ _ B

a._L hr_

(_= I/t

A1_n b_-2 m_/(A =-- _ '__ -A_,o) _#0.4 _n,

(43)

S_, n. i_2 i,.n._= H,, E_Te
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When the temperature distribution is symmetrical about

the mid-plane of the shell, the buckling occurs either in

a symmetric or an anti-symmetric pattern. The condition

for symmetric buckling can be obtained from the following

determinant:

I f I
tRI+ 9, 53 55 .. 5n

3 . _ S n-2st o

s,n snn.2 .. tR_,S_

-0

The value n in the above determinant is to be selected

by trial until the desired accuracy in the result is obtained.

(B) Fixed End Case

For fixed end condition the following displacement

pattern can be assumed.

S;n my i [-)n Srn _n_'m
n:l t

Eo$
m_ _ : l I. "
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N

Such displacement functions satisfy the forced

boundary conditions for fixed end. These conditions are:

and

t

Substituting the displacement function in change of

potential energy,A_, during buckling and integrating, we

obtain,

n:l TL'=I
2a"- Lz '_

+ bA____W_W_, -
9.0,.%

z b__._m V,V,, + z_K_ _-s_ V_V,_,

4- b6_____m_.U,_un, + 9_b6.__m,-,'_ V_,Un
2o- 2" _0.

+2nTrm b,_zU,_Vn'
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9_ Sh

o?

W_W n /

M'%
I

+ Z b__LK n n'_ S_o,. H2 b nWn' "-
f.z

B___m ko- r(rr%',,W.,
0,._.

KM2 b,.z h..O,nllT21<. 14_. Wr, Wn"
4- &"i.

_h
+ b>.___ka_m n _r_'K14,2V.W,.

0.1. r,

207" 2.'-'_ n'

where,

I

_/_: Z [expression in

_' {-=I

O'X.ha.#.W_W_'.
(4_)

the bracket[ Iof equation (20_

A_ = 2(n.-_') 'rrD.

3

n,, I_ xpression in the bracket of equation (2H 2-

[=i

i2= 2 rt_/_ z_= 2(rt+r,.')'rr/_ (sz)

n, L:I (=4
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H; is the expression in the bracket{ Iof equation (15)

Z_I= Z_It _2=° _s= 2_'_I[

A4 = Z(-'-_') Tr/_. A 5 = 2Cn+rL,)_r/t (r@

Minimizing the change in the potential energy expression

given by equation (48) with respect to Up, Vp and Wp, an

equation like (21) is obtained, where,

A I 4b_rcpa "2 p b_Grn _np- (, S,, + a_- $P

51nP: I ; b_oj.mn_

I

A2p_ = B_p

)P( bz_.dmz + 4 np_"2___bec, _ +

c_ - b= _ S_ 2_
Oc_ _

P
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+
2_ Kcv_11-_

O.L_

A_p = CIp_

_r_p = Cp_

C_p = 3b_._O.2
/" 16 bu pZ_'rr4-F
\ 9.4

+
J6 b6_ _prr _

O?-_.l

-f 4 Mr rz _"- b,z 4 P2rrL_r_2b,2 ") h_- gr_
o-2_ 2 + oy0__ / 12 P + Y

-I-2rn4b_z h_ 2Pbl2K _',, '2-.nblo. K jii
rJ2 "t-

Off" 1"2- + ell z p &L_- VI i

Y " Co-efficient of Wn in __--._.12WrlWr_,[ l_'rn'zH_n'_+ 4_'__0"_I

VI.3 Thermal Buckling of Conical Shells

The problem of buckling of conical shells has been

examined by many investigators. Thermal buckling problem

of isotropic conical shells has been studied by Singer and

Hoff(19)and Lu and Change(16). However to this investi-

gator's knowledge no significant work has been done in the

case of thermal buckling of orthotropic conical shells.
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As it has been done before, the critical temperature

distribution will be determined by enforcing the condition

that the change in potential energy during buckling is

minimum. The displacement functions that will be used in

this case are the same as those used in the case of

cylindrical shells. These displacement functions were first

used by Niordson(27) for conical shells and are found

to be quite satisfactory for cases where the slant length

of the cone is small in comparison to base diameter.

Theoretical Analysis

For simple supported case, displacement functions may

be assumed in the following form

N

5. = cosmy
I'_-- I

@,,cos,_tr(_ -0/[

N

m=l

si,_,,_r(__-,)/[

II

Co- costly _L W,, s;,__ (.-z-_)/[
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O. = _/cx

= E/_

- :c/o"

_fr= mv/_36,,

Then,

f 'i
o l

+. ---
-2.Jcz:_,_ot
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0 I

NOW substituting u, v and w in the above equation

and minimizing the change of the potential energy expression

with respect to Up, Vp and Wp, an equation of the form as

(22) is obtained, where,

, [A_p = z[
-t- bzz _o9 O* _-) + b_& _"_

_sin_ T_s_,_(_

- ll7 -



, b,_ r_Tr _S_ i
Cnp = - "---"

= Bpn

B_p = [b_2._m_/_C'+Z)
aC

A_p = CI_

+

-t-

__P TF_" [(CosK,_-I)/K_ - (CosKzE-O/K_ ]
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+ cosK_._:,(K,._ , S,',,K_F_(*,.')]

s_ K, _:(K,)

[ Co_K2F_.CK_')- S;_K_r, CK_) - F2dK_)CosKj

+ Sin K, FICK,)I - bGenm_'F_cosK, F,CK,) + S,_ K,F:C_,')
[sinc_

-cos Kz F_CK2_) -S_n K2 Fz CK:.')]
_ bl2 mn'w

[('(osK,_-I)/K I

-(Eo_K,(-,)/K,]

"fl= "_an(X__CosK1 FzCK___ - Sin K;_F,CKz') - I:2(.K,)(OSKI

+ F,(:.,) s,_.,-] - _b,_____[_0sK

- (co_Kj_-,')/K: ]

,_-- _')IK,

m" bz:- [-- _ CosK, F, CK,)SimKI + FzCK_') S_'nKI -Cos'K:.
S;n? o(

I:"[(co_K,Z-,)/K,_

+ (CosK,'L-I)/K_] + b66 FCosK, F,C'K,) +S,'nKIF:.(K)

_ _
(
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to,,

- I.,)

- 4 bGG "rnT"n_ p

Cos K_ F_CK_] +

[Cc'K'I-0A,_

S_n*cX

SC__cX

_CoSK_F, CKh "t si_K,F_.CK_)-I "C°sKz_CKz')
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t si,_K,_. OK,') - Cos_. FSC_")

ar

_ &',., K2.F6(Kz')'_

s,,,,K,r_CK,3+ cos_. F,OK;)

3.3_. ss!

_ s,s) s.Tt
I
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---- z_.. 3_ za_ t .____
_,_. 3,_-!

_ zG_ _ , . _-_+_

K,=

If only symmetric modes are considered then

p= p- : _- : =0
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Section VII

SPECIAL PROBLEMS AND NUMERICAL EXAMPLES

VII.l Thermal Co-efficients of Composite

For the fiber andthe matrix properties given in

Table 8.1, bounds on the thermal co-efficients are obtained

using the inequality developed in Section III. A computer

program is set up for finding the bounds. For obtaining

the elastic and the thermal constants of transversely

isotropic phases, methods suggested by Whitney et al (6)

and Schapery (12) have been used. The upper bound of the

thermal co-efficients, which will be of more importance

in the thermal stress and the thermal buckling problems,

are found to be,

-5

-5

The above result is for the composite with 50% fiber

content.

VII.2 Thermal Stresses in Shells

For the problem of thermal stresses and thermal

buckling six different types of orthotropic material

(see Table 8.2) will be considered. Case No. 1 in the
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Table 8.2 corresponds to a special type of orthotropy

which is isotropy.

Cylindrical Shell

(I) Simple Supported Case

(A) First a temperature distribution varying

through the thickness is considered. Since the thickness

of the shell is small, the temperature distribution through

the thickness can be reasonably approximated by a linear

distribution,

T = To _- T, z/o _l )

For a temperature distribution given by equation (1)

the displacement and the stress components will be obtained

from two different sets of equilibrium equations (See

equation (14) and (23), Section V).

For the particular temperature distribution, f( )

from equation (17), Section V, will be,

f4-4 Q?-

j% Q----z _b. J

(z)

Substituting the value of f(e) in the equation (14),

Section V, the particular solution W of the equation
P
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is found to be

Therefore, the general solution of the equation (14),

Section V, is given by,

[A_ -----

-KI _c
e [_sico_Kq_ + ESzsr_K2_]+_Ix[

where,

(5)

(4)

For the simple supported case, the boundary conditions

are as follows.

(5)

¢o - 0

(G)
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From the boundary condition on displacements,

,,8)

To apply the boundary conditions on moments, _ has
x

to be eliminated from the

equation (13) , Section V.

then becomes,

expression of MX by means of

The moment boundary condition

-T_ IT__-4 ] _ + ,_--Q
-%
hl%

f

- Ic,o C z-,- zz/a) dz = o

-%

{9)

Applying the above two boundary conditions following

equations are obtained,

,O('K_- K" ')(6,*e,B)_ + 9. K, K_ P (6,_- Bt')
19.q F'Z.& i,'z o z

C,k5
{_ (To.T, "}

(,0)
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+ LII )

Where,

lq-

Equations (7), (8), (i0) and (ii) are solved for B I, B 2,

B3, B 4. The radial displacement w for a shell of i00"

long, i00" diameter and °50" thick is tabulated in

Table 8.3 (Case 2). The particular temperature distri-

bution considered is T=50_I000Zo

To solve the same problem by means of simplified

sets of equilibrium equations (Equations (25) , and (30) ,

Section V), it is noted that particular integral W is
P

given by

Vqp : AzTo h /4_4

From the natural boundary condition (21), Section V

and the forced boundary condition w=o _ _ = o, {,

following equations are obtained.

tlS)

tl_-)

[15)



(16)

(I'1)

From equations (14), (15), (16) and (17), BI, B2, B3 and

B 4 can be determined. They are given by,

84_ [ (£¢-D,E_+ DZE, _ T
D5 - DI

(E_.- DZE5 - o_ E_ )

D2 t- I)4-

.+. -o'z--t- D4. )

_5S = E4-- D,E5 _ Og_E_ 154._ + D4_
D5- Oi

(_- o, )

e,7.= 154. -E-_

51 = e5 - 55

liB)

19)

where, El, E2 , E3 and E 4 are right hand side of the

equations (14), (15), (16) and (17).

-K(
DI = e Cos K_

-K(

.04 e _"-" _i,,_ Kt[
(Tz)
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u x is obtained from equation (25), the stresses will

be given by,

_-0

b,,

The hoopstresses obtained for different cases of

orthotropy is shown in Figure 8.1. The dimensions of

the shell is as before. The displacement component w is

tabulated in Table -8.3 (Case i).

(B) Temperature Varying in Axial Direction

A temperature distribution of the following form is

considered.

T:7o_

The particular integral in that case is given by,

where

A. To&5 - .

t'A" +
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_,--- A,..To_a_-l__K_.(,+4.a4.K,,)

-Q-la
E% = E_ e

b,/ ,

_ - - AT.To_ / C '/a_+ 4 K4

-el(_
F4 = E3e.

('2b

The hoopstress developed for such temperature dis-

tribution are shown in Figure 8.2.

(c) Temperature Varying along Generator as Well as
Thi cknes s

A temperature distribution of the following form is

con s ide re d :

T = To_Z/Q(i+T,_la) ('2"I)

The particular integral in this case

_--_/q
.INp = 5 e.

whe re,

5 --T°( / L_9)

El, E_ eL-c. ar_ _),venIo_ ,
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£3 = - 5

c. To T,/,(:>.

(II) Fixed End Case

For a temperature distribution as given by equation (i),

the particular integral is given by,

40"

To evaluate the constants B1, B 2, B 3 and B 4 the

following force boundary conditions are to be applied.

To evaluate _, the equation (24), Section V, is

integrated from o to 1 and the boundary condition (31) is

utilized and the following equation for [ is obtained.

(a3)
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where,

[ , _K[

, t.

- _-'R(6a'+_Z-a,'-_')]- f _,Oolh
0

K_

(34_

q.,K'Z

-- J-- ES_ " "
ZK ( +B4 - B,"-Bz ) (_

The stresses are given by the following equation.

_r_ = _/_ + (_,_o/_ - e,_. )

_ _ O

VII.3 Thermal Buckling of Shells

For the simple supported case, only three modes are

considered to be present. Calculations for few cases

showed that if four modes are considered the values of

critical temperature differ only by 1 to 3 percent. For

different values of thickness, length and temperature

gradient, critical temperatures have been found and
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results are presented in Figures 8.3 through 8.7.

For the case of fixed end, a two mode solution is

considered. For the particular case, two-mode solution

is found to be sufficiently accurate. Digital computer is

used for all calculations and the results are presented

in Figures 8.8 and 8.9. For fixed end case, only uniform

temperature rise has been considered.
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Section VIII

DISCUSSIONS AND CONCLUSIONS

The expression of effective elastic constants

developed in Section II are mainly due to Paul (7). In

Section III effective thermal constants for bi-direction-

ally reinforced composite have been developed° For the

particular case considered in the last section, the

numerical values of thermal co-efficients obtained, appear

reasonable.

In Section V, two sets of equilibrium equations have

been derived both for the case of cylindrical shells and

conical shells° One set of equilibrium equation is de-

rived from general equilibrium equation given by Love (15).

The other set is obtained by setting the first variation

of approximate strain energy expression equal to zero.

For cylindrical shells, Table 8.3 shows the radial dis-

placements calculated from two different sets of

equilibrium equations differ by less than 8%.

For the simple supported case, the effect of thermal

co-efficients on the hoopstress is worth noting. The

hoopstress is more sensitive to change of the thermal

co-efficient in circumferential direction than the change

of that in axial direction. Figure 8.1 shows that the

maximum hoopstress is decreased by about 71.4% from the
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isotropic case (Case No. l) when the thermal co-efficient

in circumferential direction is reduced to 50% of its

isotropic value (Case NO o 2)_ The maximum hoopstress,

on the other hand, increases about 21o4% from the isotropic

value, when the thermal co-efficient in axial direction

is reduced by 50%° The stiffness ratio does not have

any effect on maximum hoopstress in the particular case

considered _

The critical temperature for the case of isotropic

shell subjected to uniform temperature rise agrees with

result given by Hoff(21)o Figure 8°3 through 8°7 shows

the critical temperature against various parameters for

the simple supported case°

Figure 8 3 shows the effect of L/a ratio on the

critical temperature of the shell for a radius-thickness

ratio of 2000, when the shell is subjected to uniform rise

of temperature_ In the Figure 8.4, the effect of a/h ratio

on critical temperature, for a length-radius ratio of .05,

are shown° The effect of the temperature gradient on

critical temperatures are shown in Figure 8°5. In the

particular case considered, the radius-thickness ratio is

2000 and length-radius ratio is .05.

From these figures it is apparent, that in simple

supported cases, for thermal buckling to occur, the

shell has to be very thin and short° For a thick or long
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shells, the calculated critical temperature will be so

high, that the stresses at the edges will exceed elastic

limit and the plastic deformation will take place before

elastic buckling can occur.

Figure 8.3 shows that with the increase in length

the critical temperature decreases at the beginning and

after reaching a minimum value it goes on increasing°

When the length of the shell decreases, compressive hoop-

stresses which are developed because of edge constraints,

tend to spread over the entire length. The effect of this

phenomenon is to reduce the critical temperature. On the

other hand, a decrease in length increases the stiffness

of the shell and thereby tend to increase the critical

temperature. The presence of the above phenomena explains

the nature critical temperature curve in the Figure 8..3°

It is interesting to note that a 50% reduction in

the thermal co-efficient in axial direction reduces the

buckling temperature by approximately 18% from that of

isotropic case. This is, of course, the consequence of

the earlier observation that hoopstress increases with

the decrease in thermal co-efficient in axial direction.

A 50% reduction in thermal co-efficient in circum-

ferential direction, on the other hand, increases buckling

temperature by about 250%. Here a point should be noted.
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Since in the present analysis, it has been assumed that

the elastic and the thermal properties are independent of

temperature, this analysls should give fairly accurate

results when temperature is not too high° For the above

case, since the critical temperature is too high, its

value is questionable.

The stiffness ratio plays an important role on the

critical temperature. The decrease in elastic co-efficient

in circumferential direction, decreases the critical

temperature° Within the range of .05 to _2 of i/a ratio,

the critical temperature is reduced by 50-56% from the

isotropic critical temperature when the elastic constant

in circumferential direction is reduced by 50%. A 100%

increase in elastic constant in circumferential direction

increases the critical temperature up to 169%, in the

range considered° Therefore such an increase in elastic

constants considerably reduces the possibility of

thermal buckling. In fact for the above increment in

stiffness ratio, the buckling will occur only within the

range where the critical temperature curve dips° For any

other length plastic deformation will occur, at the edges.

Figure 8.5 indicates that the presence of thermal

gradient, with temperature higher towards inner surface,
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reduces the critical temperature. This is because of the

development of thermal moments at the supported end.

Figures 8°6 and 8o7 correspond to a temperature

distribution of the form T=T.e-X/ao For such an axially

varying temperature distribution, the critical temperature

TOcr is little higher than that in the case of uniform

temperature rise.

Figures 8.8 shows the effect of the length-radius

ratio on the critical temperature when the ends of the

shell are fixed. For this type of boundary condition,

the buckling occurs mainly because of thermal compression.

The length of the shell does not, therefore, has much

effect on the critical temperature, when the length is

not very smal1_ For short shells the effect of hoopstress

will be noticeable° Figure 8 8 shows that the critical

temperature decreases first with the increase in length,

then it increases a little and after that it remains

cons tant.

Figure 8.9 shows that critical temperature monotonic-

ally decreases with the increase in radius-thickness ratio

in case of fixed end shells_

No numerical result for conical shells has been

presented. It may be noted that buckling criteria for

conical shell takes simple form when only the symmetric modes
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are present° Since, only small cone angle are considered

in the study and buckling occurs only for small value of

i/a ratio, the calculation of critical temperature on the

basis of symmetric buckling will give fairly accurate

value, for the cases considered in cylindrical shell°

Based on our foregoing discussion the following

conclusions can be made.

(i) For simple supported case where the edges

are restrained in circumferential direction

but are free to move in axial direction, the

thermal buckling will occur only for very

thin and short shells°

(2) A decrease in thermal co-efficients in

axial direction, increases the possibility

of thermal buckling_ Quantitatively_ a

50% decrease in thermal co-efficient reduces

critical temperatures by 18% f_om its value

in isotropic case.

(3) A decrease in thermal co-efficient in

circumferential direction reduces the

possibility of thermal buckling°

(4) An increase in elastic constants in

circumferential direction considerably
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reduces the thermal buckling possibility.

(5) A negative thermal gradient (higher

temperature towards inner surface) reduces

the critical temperature and thereby makes

the shell more susceptible to buckling.

(6) For fixed end case thermal buckling may

occur for moderately thin shells°

(7) The critical temperature for fixed end case

is independent of the shell length except

for short shells where hoopstresses developed

affect the critical temperature to a small

extent° In case of long shells, buckling

occurs due to thermal compression and the

shell may be expected to buckle into multi-

ple waves.

(8) The general buckling criterian that has been

derived contain pre-buckling rotation terms.

For numerical results, buckling criterian

without pre-buckling rotation terms has been

considered. Pre-buckling rotation terms may

affect the buckling temperature to certain

extent and this remains to be investigated.
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In this study a buckling criterian that is

applicable to an arbitrary temperature distribution

has been developed. However numerical result presented

here is only for axi-symmetric case.
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Table 8.1

Matrix

_i=6xi0-6/Oc

El=O.44xlO+6psii

=0.382

Fiber (X-direction)

_2=3xi0-5/Oc

6
E2=2x10 psi

=0.3

Fiber (Y-direction)

_3=0.49xi0-5/Oc

E3=69.8x106psi

=0.3

Table 8.2

Case

1

2

3

4

5

6

No
bl2/bll

0.3

0.3

0.3

0.3

0.3

0.3

b22/bll

1.0

1.0

1.0

0.5

2.0

2.0

Cl/bllPer°F

10 -5

10-5

.5x10 -5

10 -5

10 -5

•5x10 -5

C2/bllPeraF

10 -5

•5x10 -5

-5
i0

-5
i0

10-5

-5
i0
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